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Abstract. In this paper the problem of the current flow between the two electrodes is further
continued. The steady state of solid electric conduction with the two boundary conditions is
analysed. The space charge is defined by free holes and electrons as well as by trapped electrons.
As the interactions between free carriers, carrier generation is assumed. Under these conditions,
it was found that the current—vaoltage characteristics can be discontinuous. The shape of these
curves can be of ‘S’ or "N” type.

1. Introduction

One of the electrical properties of the metal—solid (insulator or semiconductor)-metal systemn
is the current—voltage characteristic. The shape of this curve is determined by the boundary
and internal processes. The fundamental problem of the bipolar space charge theory is to
identify the boundaries and the interior together.

The shape of the curreni—voltage characteristic can be ‘S’ or ‘N’ type with a negative _
differential resistance [I-14]. The most interesting case occurs when these curves
are discontinnous (this property is called the switching effect of the current—voltage
characteristic). Usually, the interior is characterized by a change in the tofal energy of
the electron in the given material structure. There exist internal and external conditions in
which the total energy of the eleciron increases (i.e. carrier generation occurs) [15-38]. In
general, the internal processes determine a differential equation which makes a set of the
electric field distributions. In order to find the “S°- or ‘N’-type curves, it is necessary to give
the boundary conditions describing the mechanisms of carrier injection from the electrodes
into a solid. ) :

In [39,40] we presented a model describing electric conduction with two boundary
conditions. These analytical cafculations show that there can exist two singular solutions
for carrier generation coaditions. In this paper we shall find the physical interpretation for
singular solutions.

The purpose of this work is to explain the switching effect of the current-voltage
characteristic. T

2, The model system and the basic equations

In this paper we shall consider electric conduction in amorphous or impure crystalline solids.
We shall assume that different defects exist in the given material structures, The atoms of
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Figure 1. The energy diagram and allowed electron transitions caused by incident phonons and
photons, where W is the total energy of the electron, Wy, is the valence level, and (4) and (=)
denote the anode and cathode, respectively: 1, vp N2 with the hole activation energy denoted by
(W2 — Wy); 2, Catngs; 3, vptte) with the electron activation energy denoted by —W1; 4, pank;
5, uppkE.

a solid can be displaced (the Schottky and Frenkl defects) or pollutants and impurities can
occur. Also, different dislocations are possible. Under these conditions we shall assume that
the concentration of atoms in space is possibly maximal. Thus, different electric-magnetic
force interactions between adjacent atoms occur. These interactions determine a potential
energy distribution of the electric field. We shall assume that microscopic regions (iraps)
exist in which the negative potential energy of the electric field is condensed. In these
regions the total energy W is of the form

np?
W;::Wp[)'}'g_r;"éi_z‘ n=12 ..
or
(n + L2
W, =W, _— =0,12,....
o+ i n=0,1

Here £ is the Planck constant, m is the electron mass, Wpo is a constant potential energy
of the electric field and d denotes the microscopic distance. In the trapping region the total
magnetic field is the sum of the magnetic fields of all the electrons and nuclei of the adjacent
atoms surrounding the given trap. Thus, the Zeeman internal effect (the splitting of the total
energy W) occurs and many allowed energy states are available for the valence electron in
the band gap. When the temperature is sufficiently high, then the system of atoms becomes
more chaotic since the kinetic energy of these atoms increases. Under these conditions
the valence electrons can absorb additional Kinetic energy and pass to a higher (trapping
level) energy state. In this paper we shall assume that the valence and trapped electrons are
permanently bombarded by phonons and photons. Absorbing the additional kinetic energy,
the electrons can pass to the zero reference level in which these electrons become free.
The empty energy state left by the electron determines the vacancy with the positive charge
(hole). These allowed electron transitions define the hole—electron pair generation (figure 1).
The empty energy state in the valence band can be occupied by the valence electron of an
adjacent atom when an additional sufficiently high energy is given to these electrons by
an external electric field. This property of the external electric field defines the vacancy
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(hole) flow with the mobility 1,. The same situation occurs in the conduction band. When
additional kinetic energy is given to the free electron by the external electric field, the carrier
flow with the mobility u, (figure I) occurs. For the above internal processes, we shall find
the equations describing the carrier flow between the two electrodes. To this end we make
the following assumptions.

(I) As a model system, the planar capacitor (figure 2) with the anode at x = 0 for
injecting holes and with the cathode at x = L for injecting electrons will be considered.

(I1) The potential barrier width is small in comparison with the mean free path and there
are no surface states at the electrodes.

(1Y) The hole and electron mobilities are independent of the eiectrlc field intensity E.

IV) The carrier dlffusmn 1s unimportant.

With these assumpnons the carrier flow between the anode and the cathode will be
described by the Gauss equation, the continuity equation, the generation equations and the
field integral. In the planar capacitor system these equatzons are as follows:

JE(x,t
£ gfc ) q{p(x, t) —n(x, 1) — nu(x, 1) — nplx, 1)} M
5 aplx, on(x,
B_{ﬂpP(JC, DE(x, 1) + pan(x, DE, D} + 2 e B e t)l
* dnalx,t) Onalx, 1) " "
] v d =
T ° ”
- 2
3-’2;15, 2] = A (x, 1) + —{u.n(x, YE(x, 1)} ®
P dax
a 1
PaGD  Comate, ) —wmate D) Na > | @
dnp(x,t - 7
nrza(: ) = vazz — Conplx, ) Nez > 1 ®
3
f E(x,)dx=V .V = constant > 0. ©
Jo -

Here, g is the electric charge, ¢ is the time, x is the distance from the electrode, £ is the
dielectric constant, n and p are the free hole and electron concentrations, respectively, 7,
and n,, are the concentrations of the trapped electrons, N,; and N,; are the concentrations
of the energy states in the first and second trapping levels, respectively, v,, v, and Cy
are the generation parameters, V is the applied voltage and L is the distance between the
electrodes. The frequency parameters are of the form of the Boltzmann factors:

Vyp = Vg exp(Wl/kT) Vp = Vp GXp((Wt_,, - Wz)/kT) Cg; = (C,‘j)
Cij = exp(—-Vﬂ—,—/kT) Wjj = W} - VV, > 0.

Here, T is the temperature, & is the Boltzmann constant, vp &~ 10'? s™1 and {} denotes the
mean value. The importance of the energy parameters is shown in figure 1. For these space
charge conditions we shall examine the steady state and we shall find new current-voltage
characteristics.

(7}

3. The solution of the problem

From {1)—(6) it follows that the electric field intensity E(x) in the stationary state satisfies
the following differential equation:
dE X —Xg ‘
- 3
dx =a E @ ®)
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Figure 2. The planar capacitor systern and the boundary and internal processes. Here, kv
denates the total energy of a phonon and a photon; g,(x) is the space charge distribution ang J
is the total current density; a and b denote the voltage (or current) terminals.

where
N N, 1
a = {fp + padqvp !2: a = qVpi¥e2 (_ + _1_) (8a)
Efinilp 3 Ca W
and xg is a constant of integration. Equation (8) has the two singular solutions
E(x) = —2Va(x —x0)/L*  E(x) =2Vpm(x — x0)/L? ®)

where

L? L? 2 .
Vor = = (a2+ Ja2 +4a1) Vop = - (—az+ a22+4ﬂ-1) . (9a)

The functions (9) are illustrated in figure 3. The voltage parameters Vy; and Vo, define the
negative and positive space charge densities in the bulk. These functions (9) characterize the
n—p-type material (figure 3(a)) or n-type material (figure 3(b)) or p-type material (figure 3(c)).
It should be noted that the singular solutions contain only one constant of integration.
Thus, in order to find the particular integral, we have to give only one boundary condition
describing the mechanisms of hole and electron injection from the electrode x =0orx =L,
respectively, into the bulk, These mechanisms can be described by J = fo[E(0)] as well
as the J = fr[E(L)] where J is the steady-state current density, and fy and fr are the
boundary functions describing the carrier injection from the electrodes x =0 or x = L,
respectively, into the bulk. Therefore, the current—voltage characteristic determined by the
integral condition (6) and the boundary function is of the form

J = fLl{V = Va}/L] V > Vo (10)
J = fol(V = V) /LY = fl(V + Vi) /L] V> Ve (11)
J = fileV/L] Vo<V <Vrg <V (12)
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where
2y (1 + by) Vor Va 14 by?
=t Vo= — 22 Vg = v
1+by2- 0 Voo + Vi TH 1+& o1 13)
_Vuo _E@D) _
Voz E
and .
E(0) = (2 +z122)”" [zlL & 2L — (2} + ziza) (L2 — 2ng)] (13a)
E(L) = (& + z1z)™ {zzL + /2302 — (2 + )L ~ 22 V)} (13b)
where
L2 L?
= . = 13
D% e T T 2ve (13¢)
(a) (b) (c)

Figure 3, The interpretation of the singular golutions (9). (a) The system acts as an n—p junction,
(b) A negative charge is distributed between the electrodes. (c} A positive charge is distributed
between the electrodes. .

The current-voltage characteristics (10)—(12) correspond to the E(x} curves presented in
figures 3(b), 3(c) and 3(a), respectively. The condition V < V¢z(V) defines a set of values
of the threshold voltages. The functions a(y) and Vrg(y) are illustrated in figure 4. In
this figure the characteristic parameters yy, y» and Vi, are shown. These values depend
on Vo and Vy; in the following form:

1 1 -
n= -1+ VI+b) y2=1+1/1+g Vig=2(/1+b6—1D)Vp.  (13d)

For y = 37 we have «(y) = 1 and the threshold voltage Vo (y1) is equal to the minimum
Viy. For y = y» the parameter o is equal to the maximum @my = a(yz) > 2. The
parameters o and Vry are important for the switching effect. In order io show this property
we have to use (10)-(134). On this basis we can define the different current-voltage
characteristics J(V) for different values of ¥ and 4. For example, if fr is the Fowler—
Nordheim function, then J (V) has the form

{a(arV)2 exp(—b/aV) Vo<V < Vry

(14)
a(V — Vo) exp(—b1/(V — Vo)) for V. Vry
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or

e {a(avf exp(—by /aV) Vo<V <Vry as)

a(V + Vel exp(=b:1/(V + Va))  for V > Vs

Here, a and &; are the material parameters. The curves of (14) and (15) can explain the S’
or ‘N’-type switching effect. In figure 5 the current—voltage characteristics J (V) are shown
for different values of the ratios p and b. The arrows indicate the change in the current
density J with the voltage V. When E(L) is equal to zero, i.e. & = 0, then the system
acts as a blocking diode (figure 5(a)). In this case, n-type conduction occurs. If & < 1 and
b>5/4ora s 1and b =35/4, then the switching effect is possible for values of V > Vry
(figures 5(b)}-5(d)). Thus, in this case the condition V > Vry defines a transition from
n—p-type conduction 10 p- or n-type conduction. For ¥ — 1—, i.e. & & 2 and Vop &~ Vi,
transition from n-p-type conduction to p-type conduction is possible (figure 5(e)). In this
case, if the threshold voltage Vor is great, then the switching effect cannot occur and the
J(V) curve is the Fowler-Nordheim function. In this case the system acts as an n—p
junction.

3 {a)
2 P S T e B
i
B b 1
1}--- P >
i
I
H I
0 ¥, 1 7, 7

Figure 4. The importance of the parameters & and Vyg for the switching effect: (a) the shape
of the function & = e(y); (b) the shape of the function Vrg = Vrg(y).

4. Discussion

Usually the problem of the switching effect has been explained by the negative-differential-
resistance (NDR) regime. The NDR problem has been analysed for perfect (E(0) = E(L) =
0) contacts as well as for the ohmic (E(L) = () and blocking (J « E2(0)) contacts. With
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Figure 5. The current-voltage characteristics determined by the singular solutions (9) and by the
Fowler-Nordheim boundary functions at x = 0 and x = L. (a) The system acts as a blocking
diode (a case of the voltage source). () The ‘S’-type switching effect occurs (a case of the
current source and Vip & ). {c) The ‘N’-type switching effect occurs (a case of the voltage
source and Vi = 0). (d) The ‘S’-type switching effect occurs (a case of the voltage or cument
source). (e} The ‘N’-type switching effect occurs (a case of the voltage source).

these boundary conditions, the ‘S’-type characteristic with NDR has been obtained. From
the regional approximation method it follows that the threshold voltage can be written as
[30,31]

L?ngo { §op0pPro ">
Vry = P ‘ = Ng — 16
TH = 57 ( 212, Nx Pro = Ng — ngo (16)

for the perfect contacts or [17, 18]

L2 3npo \' {1
At TnTpho p
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for ohmic and blocking contacts. Here, o, is the recombination cross sections of a hole, v,
is the thermal velocity of a hole, Ny is the recombination centre concentration, ngy and mg
are the equilibrium concentrations of trapped and free electrons, respectively, and 7, and
t, are the electron and hole lifetimes, respectively. Referring to our considerations, we can
ascertain that the J(V) curves can be discontinuous (figure 5) and the threshold voltage
VT H is

Vo< Vra € Vo for xo € (0; L). a7
In general, referring to the planar capacitor system (figure 2), there exist the two following
problems:

{1) given V {the case of the voltage source), to find J(V) (figures 5(a) and (5(c}-5(e));

(2) given J (the case of the current source), to find V(J) (figures 5(b} and 5(d)).

In figure 5(a} the J{V) curve is shown for ¢ =0, i.e. xg — L—. In this case we have
E(L) — 0. From (9) it follows that E(L} is infinitesimal as Vg — 0 (a negative space
charge occurs). This condition is possible when af 3> 4ay, ie.

Hntlp . EVp
n 1 Hhp g N2

(18}

and
qu N t2

Vo = for v, & v, & Cyy. (18a)
Hence, it follows that the negative space charge edE/dx = —2eVy/L? = —2gNy is
distributed in the bulk. Thus, the condition & = O shows that the space charge of trapped
electrons is dominant. In the particular case when N & Ny, then the total space charge is
localized in the band gap. In other words, almost all the additional permissible energy states
caused by the Zeeman internal effect are occupied. Note that the condition (18) determines
a configuration of atoms in space (this property corresponds to the Schottky and Frenkl
defects as well as to the different dislocations). Also, the condition & = 0 occurs when
the boundary function f is monotonic and the inverse function f;’ ! satisfies the condition

~1(0) = 0. For instance, if f;, is the Schottky function, then the condition o = 0 is
not satisfied. When carriers are less mobile (a5 & 4a; or a% < 4¢) and a low level of
carrier injection from the electrodes x = 0 and x = L occurs, then carrier generation has
an important influence on electric conduction. This property is characterized by « > 0 and
xo € (0, L). The condition xy € (0, L) defines the threshold voltage Vry. If & < 1, then
the voltage parameter Voo is very small. In this case we can assume that Vo = Viz = 0
(figures 5(b) and 5(c)). In these figures, curves I are for @ > 0 and xy € (0,L). For this
current flow the space charge density g,{x) has the form

Ty x € (0, xo)

The distribution (19} is possible for a low level of carrier injection. The function g, (x) is
discontinuous at the plane x =-xp and the planar capacitor system acts as an n—p junction
(figure 3(a)). Curves 2 (in figure 5) can occur when a positive charge *g, (figure 3(c)) is
distributed between the electrodes (the case of a high level of hole injection). Similarly, if
a negative charge —¢q, (figure 3(b)) is distributed between the electrodes, then curve 3 (in
figure 5) occurs ¢high Jevel of electron injection). Thus, for V > Vry (this condition defines
a new configuration of atoms) the distribution g,(x) becomes continuous and g,(x) = ~g,
(transition from curve 1 to curve 3 in figure 5(c)) or g,{x} = *g, for x € (0, L) (transition

“gy=—2eVa/L?  Tg,=2eVup/LE  (19)

Gy
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from curve 1 to corve 2 in figures 5(b), 5(d) and 5{(g)). In the particular case when catriers
are not oo mobile, then we can have 4aq; > a% {this condition determines a configuration
of atoms in space), i.e. Vo — Voo. In this case the threshold voltage Vo can take the
following form: :

n N, ) '
Vo ~ 1L a = %Lz‘/w_ (20)

Eflnflp

A switching effect can occur when the threshold voltage Vi1 is not too great. If this value is
very great {e.g. L 3» 10~% cm and N, > 10'7 cm™3), then the current—voltage characteristic
is described by (12) (curve 1 in figure 5). Generally, from our considerations it follows that
the switching effect is a singularity of electric conduction and n- or p-type space charge
regions are determined by a configuration of atoms in space (this property is equivalent to a
distribution of permissible energy states in'the band gap) and by the mechanisms describing
carrier injection from the electrodes into the bulk.

The current—voltage characteristics presented in figure 5 are obtained by experiment.
In figure 5{a) the shape of the function J(V) is typical for PcZn, PcCu, Se, As:Se, PcNi,
SiC, ZnTe and halogen glass of composition 12 at.% Si-9.76 at.% Ge-29.9 at.% As-
47.7 at.% Te. This characteristic defines one of the properties of the solar cell system. In
figures 5(b)-5(e), the current—voltage characteristics are typical for the different insulator
and semiconductor materials such as ZnS, CdS, Se, As:Se, 8109, Al;Os, GaAs, anthracene
{amorphous structure), polyethylene, Ge and Si. Usually, as the material electrodes, Au,
Ag, Cu, Al, In, Sn, Ta, Zn and others have been used. For example, the metal-solid—metal
system has been realized by structores such as In/InP/In, Ta/halogen glass/Ta, Sn/GaAs/Sn,
Al/ALOs/Au, Al/SIOL/Al In/CdS/Ta, In/CdS/Au, In/PcZn/Au and Au/PcZn/Al

Now, let us discuss the boundary problem for (1)-(6). By combining (1)~{5), the
equations describing the free carrier flow can be written as

an an n .

Fraae 'EE“ a qn(P_n_nr] —H2) — Wl =0 - (21)
d M

a—pr Lt B p(p — 11 — ) = 0N =0, @

Using the theory of characteristics for (21) and (22), we can write the ordinary equations
for free electron flow as

dx,
dt(r) =BG, 1) £ng
dn(x t3] :j fn = n(p—n —ny —ng) + vpny (21a)
# = fa(xa(D), £)
and for free hole flow
dx,(t :
c‘,’f = B0 ' ipd
dp(x, (1), 1) fp=—— PP —n—nn —ng)+ Ny . (220)
——E = () )

From (21a), (22a) and (4)—(6) it follows that the cumrent flow between the anode x = 0 and
the cathode x = L is determined by the initial conditions p(x,(0), 0), £(x,.(0}, 0}, £.;1(x. 0)
and np;(x, 0) and by the boundary conditions p(0,1) and n(L,?) for E(x,#) > O in the
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region x € {0, L) and ¢ > 0. In order to obtain the singular solutions (9) (figure 3(b) and
3(c)), we must have the following boundary condition [39]:

P p— ,:fLIE(L't)]-!-S(az—%!-)]

gltn + 1) L HAEQ, 1) L? -
it = e [BELDL o ()]
’ g(tn + P‘p) wnE(L,t) Un L2
Oor
ta folE(0, )] ( 2V02)]
0,8 = £
POD = ot i) [ 1 EQ,n T\t T o

e THIEON  mp ( 5@)]
"a””—q(un+up){u.nE(L,r) Cw \ 2t )|

Here, the boundary functions fp and f; describe the mechanisms of carrier injection from
the electrodes into the bulk. The boundary function p(0, ¢} described by (23) and n(L, )
described by (24) determine the singular solution shown in figure 5(a). On this basis we
ascertain that the current~voltage characteristics (10)~(12) are valid. Instead of 1, in (22a),
we can make use of —u;, (the valence electron mobility and x, < 0). Under this condition,
the characteristics (22a) describe the valence electron flow from the cathode x = L to the
anode x = Q. This is expressed by fr in (11). From (23) and (24) it follows that the
condition & = 0 (i.e. the J(V) curve shown in figure 5(a) oceurs) is possible when the
boundary functions satisfy the following conditions:

1/0(0)/0l < o0 1/2(0)/01 < 0. (25)

For example, these conditions are satisfied by the Fowler—Nordheim function and by the
power functions, i.e. fo.r(Eg.) x E§, and k > 1.
From (12) it follows that the current—voltage characteristic is not defined for the voltages
V < Vp (figure 5). This property can be explained by a change in the configurations of
atoms in space. When the given material structure is permanently bombarded by photons,
a part of this energy is absorbed by the rotators and oscillators. By quantem mechanics,
the energy W, of the rotator and the energy W, of the double (linear) oscillator are of
the form
hZ
W =510 +1)  Woe=hvgek+3)  Lk=0,12,.... (26)

Here, I denotes the moment of inertia, ! is the orbital quantum pumber and v, is the
frequency of the oscillator. The phonon can absorb a portion of energy when Al =1 and
Ak =1 (A denotes the difference). Thus, the photon energy #v,;, absorbed by the phonon
is of the form
hZ
hvppor = -I—(l F 1D+ g, for Al =land Ak = 1. (26a)

This relation is valid when the Compton effect for the phonon is peglected. Also, either
Al =1 and Ak = O (the function Vpuee = Vpue({) defines a spectrum of the rotator) or
Ak =1 and Al = 0 (the spectrum of the oscillator). The rotator and oscillator characterize
interactions between the given atom and the adjacent atoms in the bulk. Thus, the new
(higher-)energy states are occupied by the phonon. In other words, the condition ¥V < ¥
denotes that there exists a configuration of atoms (ie. the energy levels occupied by the
rotators and oscillators are sufficiently great) for which the mobility parameters w, and g,
(figure 1, arrows 4 and 5) do not exist.
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Also, for the condition V < V; we must assume that special photoelectrochemical and
thermal processes at the electrodes occur [16, 25,41-43].

On this basis, we ascertain that there exist boundary and internal conditions in which
the metal-solid (insulator or semiconductor}-metal system can act as a solar cell. This
property, in particular, is observed for materials such as Si, SiC, PcZn, PcCu, CdS, CdSe,
A8Sa, AsoS3:8byS3, AsySes and TiO,. )

Now, let us find the relation between the general integral in (8) and the singular
solutions of this equation. From (8) it follows that the gemeral solution is of the form
E(x) = E{(x, A, B) where A and B are constants of integration. A particular integral is
found by the use of the boundary values of E{0) and E(L). Therefore, for this problem,
the space charge density distribution g,(x) = e dE(x)/dx is written as

gu(x) = gu(x, E0), E(L)) . J=f[EWO] I = fLlEL).  (27)

In the case of the singular solutions (9), the space charge density distribution is uniform,
iLe.

qo(x) == ~2eVo1 /L? org,(x) = 26V /L2,

On this basis we ascertain that the particular integral £(x) and the singular solutions (%)
are separated. Therefore, in terms of (27), the current-voltage characteristics presented in
figure 5 cannot be obtained [39].

5. Conclusions

In the above we have obtained new and simple solutions for carrier generation. These
solutions are as follows.

{1) The system can act as a blocking diode with the current—voltage chatacteristic
showed in figure 5(a). This J(V) curve occurs when carriers are very mobile, the boundary
function f; is monotonic and the inverse function f; ! satisfies the condition fL‘ o) =
In this case the total space charge is localized in the band gap.

{2} In the case when carriers are not too mobile, the sotutions (103-(13d) deﬁne the ‘5°-
or ‘N’-type switching effect for V > Vry. There exists a function a; = f{(a) (this is a
condition for a configuration of atoms in space) which defines the values of the threshold
voltages Vry € {Vp, Vo1). The condition V > Vrgy defines the transition from a low level
of carrier injection to a high level of electron or hole injection.

(3) When the threshold voltage Vry = Vy is very great, then the curreni—voltage
characteristic has the form J = f1(2V /L) and the switching effect does not cccur.
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